edexcel "

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCSE in Chemistry (5CH2H) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG039995
All the material in this publication is copyright
© Pearson Education Ltd 2014

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{1}$ (b)	D equal numbers of protons and electrons		(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{1 (c) (i)}$	Ca	Reject CA / ca /cA ignore calcium	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{1 ~ (c) (i i) ~}$	O	ignore any negative charge on the O ignore oxygen reject: oxide/ O_{2}	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{1 (d) (i)}$	13	Allow correct working even if wrong answer	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{1 (d) (i i) ~}$	D AIN		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	A use hydrochloric acid which is more dilute		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)	An explanation linking two of M1 \{particles/reactants/collisions\} have more energy (1)	atoms/ions/molecules as alternatives to particles reject electrons particles move faster more collisions per unit time ignore collisions are more likely/greater chance/probability of collisions/faster collisions more particles have required activation energy	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i i)}$	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (2)	multiples or halves	
all formulae correct (1)	reject other reactants or products		
balancing correct formulae (1)	ignore heat on arrow or elsewhere ignore state symbols ignore use of lower case h, lower case o, or use of superscripts or large numbers inside the formulae	(2)	

Question Number	Answer	Acceptable answers	Mark
2(d)	An explanation linking M1 energy needed to break bonds / energy released when bonds formed (1)	bond breaking is endothermic / bond making is exothermic if any contradictory statements made in M1, the mark cannot be awarded (and so M2 cannot be awarded either) ignore numbers of bonds eg more bonds formed than broken "more energy is released forming bonds than needed to break bonds" (2)	M2 more heat / energy is released than needed (1) M2 dependent on scoring M1

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	B potassium and caesium, copper and iron		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	A description linking	Any reference to molecules/molecular/intermolecul ar/covalent scores 0 marks overall	
(regular arrangement of) positive			
ions /cations (1)	metal ions reject "negative and positive particles" / positive atoms / protons ignore descriptions of atoms in rows/ layers of particles etc		

Question Number	Answer	Acceptable answers	Mark
3(b)(ii)	An explanation linking	M1 electrons (1)	pass through / travel
	M2 move/flow (1)	For M2: ignore free/delocalised (electrons) ignore electricity flows ignore (electrons) vibrate ignore carry/pass the current/charge	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i)}$	A description including any two from floats (1) moves (around) (1) effervescence / fizzing / bubbles (1)	moves (around) on the surface (2)	white smoke formed ignore gas/hydrogen given off
	melts/changes to a ball shape (1) becomes smaller /disappears (1)	dissolves / explodes Ignore: burns/catches fire/ignites/flame/sparks ignore addition of indicators	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i i)}$	2Na $+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$ LHS (1) Ras (1) balancing of correct formulae(1)	NaHO ignore brackets around OH Use of lower case h, upper case A, lower case o, or use of superscripts or large numbers inside the formulae loses 1 mark only ignore state symbols	

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (a)}$	A aluminium nitrate and lead sulfate		(1)

Question Number	Answers	Acceptable Answers	Mark
4 (b)	An explanation linking two of the following strong (forces of / electrostatic) attraction (1)	Any reference to molecules/molecular/intermolecular/covalent scores 0 marks overall strong bonds ignore "between atoms" for this mark ignore strong lattice / giant structure	
(between) oppositely charged ions (1)	positive and negative ions reject between bonds reject charged atoms for this mark	requires lot of heat/energy \{to separate ions/overcome forces/break bonds (1)	ignore hard to melt/high temperature needed

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (c) (i)}$	white \{precipitate /solid \}	white powder	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (c) (i i)}$	$\mathrm{BaSO}_{4}+2 \mathrm{KCl} \mathrm{(2)}$	$\mathrm{SO}_{4} \mathrm{Ba} / \mathrm{CIK}$	
	OR	Ignore incorrect use of case, or use of superscript or large number 4	(2)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (d) (i)}$	$\mathrm{C} \mathrm{K}^{+}$		
			(1)

Question Number	Answers	Acceptable Answers	Mark
4 (d)(ii)	A description linking three of the following (sequence has to be correct for full marks) M1 add/mix/react only sodium carbonate (solution) and lead nitrate (solution) (1) M2 filter (off precipitate) (1) M3 dep on M2 M3 wash/rinse (solid/residue with distilled water) OR dry using \{filter paper/paper towel/in a (warm/drying) oven\} (1)	add/mix/react the (two) solutions/them for M1 ignore warm/heat mixture if any indication of heating to evaporate anywhere only M1 can be scored if any other reagent added eg acid can score max 2 for question decant (off the solution) reject if wash with acid or other reagent leave to dry / in the sun / on a radiator / near a window reject heat/hot oven	(3)

Question	Answers			Acceptable Answers	Mark
5 (a)(i)		$\begin{array}{\|l\|} \hline \text { chlorine- } \\ 35 \\ \hline \end{array}$	chlorine- 37		
	number of protons	17	17		
	number of neutrons	18	20		
	number of electrons	17	17		
	the four 17s (1) the 18 and 20 (1)				(2)

Question Number	Answers	Acceptable Answers	Mark
5 (a)(ii)	An explanation linking M1 average (mass of atoms/isotopes present) (1) M2 more chlorine-35 than chlorine-37 / higher \{percentage / abundance\} of $\mathrm{Cl}-35$ / lower \{percentage / abundance\} of $\mathrm{Cl}-$ 37 / (1)	mean ignore weight 75\% chlorine-35 / 25\% chlorine37/ chlorine- 35 and chlorine-37 in ratio 3:1/ correct calculation to obtain 35.5 (2) $\operatorname{eg}[(75 \times 35)+(25 \times 37)] / 100$	(2)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{5 ~ (b)}$	Diagram showing one carbon and four chlorines	use of dots or crosses or mixture of both four pairs of electrons shared between the carbon and chlorine atoms (1) fully correct (1)	ignore inner shells even if incorrect ignore symbols

Quest Numb		Indicative Content	Mark
QWC	*5(c)	A response including some of the following points Note: (carbon to carbon) strong bonds is given in question Diamond: Uses and Properties - in cutting tools/engraving - drill bit - jewellery - diamond very hard/strong - attractive/lustrous - high melting point Explanations - giant molecular/covalent - each carbon atom bonded to four other carbon atoms - three dimensional structure - to break it lots of bonds would need to be broken - would need lot of energy/force Graphite: Uses and Properties - to make electrodes - a lubricant - sporting equipment - in pencils/drawing - graphite conducts electricity - soft Explanations - giant molecular/covalent - each carbon atom bonded to three other carbon atoms - each carbon atom has a free electron - delocalised electrons - (delocalised) electrons move to carry current - layers of carbon atoms - weak forces/bonds between layers/sheets - so layers/sheets can slide/rub off or over each other	(6)

Level	0	No rewardable content
1	1-2	- a limited description eg for either diamond or graphite states a correct Use or Property - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description/explanation eg for both diamond and graphite states a correct Use or Property linked with at least one relevant explanation point OR for either diamond or graphite States a correct Use or Property linked to at least two relevant explanation points - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed explanation eg for both diamond and graphite States a correct Use or Property linked to at least three relevant explanation points (in total) OR for either diamond or graphite States a correct Use or Property linked to at least four relevant explanation points (in total) - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
6(a)	Fe Cl $2.8 / 56$ $3.55 / 35.5$ (1) 0.05 0.1 or 1 2 (1) $\mathrm{FeCl}_{2}(1)$	```\(\mathrm{Cl}_{2} \mathrm{Fe}\) \(\mathrm{FeCl}_{2}\) with no working (3) Consequential errors: if "upside down" ie \(56 / 2.8\) and 35.5 / 3.55 ratio 20 : 10 or 2 : 1 (1) empirical formula \(\mathrm{Fe}_{2} \mathrm{Cl}(1)\) allow 3 marks for \(2.8 / 56\) and \(3.55 / 71\) ratio 0.05 : 0.05 or 1 : 1 empirical formula \(\mathrm{FeCl}_{2}\) allow 2 marks for \(2.8 / 56\) and \(3.55 / 71\) ratio 0.05: 0.05 or 1 : 1 empirical formula FeCl allow 2 marks for \(\begin{array}{cc}\mathrm{Fe} & \mathrm{Cl} \\ 2.8 / 56 & 3.55 / 35.5(1) \\ 0.5 & 0.1 \quad(0) \\ \mathrm{Fe}_{5} \mathrm{Cl}(1)-\mathrm{ECF} & \end{array}\)```	(3)

Question Number	Answer	Acceptable answers	Mark
6(b)	EITHER 2×23 (1) g Na makes 2×58.5 (1) g NaCl $\begin{array}{r} 9.2 \mathrm{~g} \mathrm{Na} \text { makes } \frac{(2 \times 58.5) \times 9.2 \mathrm{~g} \mathrm{NaCl}}{46} \\ (=23.4 \mathrm{~g}) \end{array}$ OR 23 g Na makes 58.5 (1) g NaCl 9.2 g Na makes (58.5) x9.2(1) g NaCl 23(1) $\begin{equation*} (=23.4 \mathrm{~g}) \tag{1} \end{equation*}$ mark consequentially eg 46 (1) g Na makes ($2 \times 23+35.5$) (0) g NaCl 9.2 g Na makes $\frac{(2 \times 23+35.5) \times 9.2}{46}$ (1) g NaCl $(=16.3 \mathrm{~g})$	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0) $\begin{aligned} & \mathrm{mol} \mathrm{Na} \text { used }=9.2 / 23(1)(= \\ & 0.4) \\ & \mathrm{mol} \mathrm{NaCl}=0.4 \quad(1) \\ & \text { mass } \mathrm{NaCl}=0.4 \times 58.5(1) \\ & \qquad(=23.4 \mathrm{~g}) \end{aligned}$ Ignore units throughout unless incorrect mark consequentially awarding 2 marks for 46.8 $\mathrm{g}, 11.7 \mathrm{~g}$ and 16.3 g (see last example opposite).	(3)

Question Number	Indicative Content	Mark
*6(c)	A description, comparison and explanation including some of the following points Order of reactivity: chlorine $>$ bromine $>$ iodine Experiment - add (aqueous) chlorine to a solution of potassium bromide - the solution turns orange/yellow - bromine is produced Conclusion/Explanation and equation: (so) chlorine is more reactive than / displaces bromine $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ Experiment - add (aqueous) bromine to a solution of potassium iodide - the solution turns brown - iodine is produced Conclusion/Explanation and equation: (so) bromine is more reactive than / displaces iodine $\mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KBr} / \mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$ Experiment - add (aqueous) chlorine to a solution of potassium iodide - the solution turns brown - iodine is produced Conclusion/Explanation and equation: (so) chlorine is more reactive than / displaces iodine $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$ - Allow use of organic solvents to identify halogens - Allow use of suggested reactions which do not produce a displacement reaction eg add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation - Allow use of table of suggested experiments	(6)

Level	$\mathbf{0}$	No rewardable content
$\mathbf{1}$	$\mathbf{1 - 2}$	•a limited description of at least one experiment in which any halogen solution is added to any halide solution (not of the same halogen) $\mathbf{2}$ $\mathbf{3 - 4}$

(total for Question 6 = 12 marks)

